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ABSTRACT

Abu-Afouna, Nour hamad Suleiman. Simple Linear Regression Model With
Periodically-Correlated Errors. Master of Science Thesis, Department of
Statistics, Yarmouk University, 2011, (Supervisor: Dr. Abdullah A. Smadi), (Co-
Supervisor: Dr. Mohammed H. AL-Haj Ebrahem).

Regression analysis is a very important area in statistics for both theoretical
and applied disciplines. In this thesis, the simple linear regression model with

autocorrelated errors is considered.

The main objective of this thesis is the studying of simple linear regression
model with periodically-correlated errors. Instead of assuming that the errors follow
the autoregressive model of order one (AR(1)) which is traditionally assumed for
autocorrelated errors, we assume that the errors follow the periodic autoregressive
model of order one (PAR(1)) in this study. This m;)del is useful for modeling
periodically autocorrelated errors. In particular, it is expected to be useful when the

data are seasonal.

In this research we have studied the estimation of parameters of the simple
lincar regression model when the errors follow PAR(1). Besides, the relative
efficiency of these estimates are obtained and compared with the estimates for the

white noise and AR(1) models.

The power of the Durbin-Watson test is also investigated through Monte-Catlo

simulation for errors following AR(1) and PAR(1) models.

Finally, the remedial measure of autocorrelated errors known as Cochrane-

Orcutt procedure is extended to the case of periodically autocorrelated errors. Using

xi
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Monte-Carlo simulation, we found that the estimates for the Cochrane-Orcutt

procedure dominate the least squares estimates. Also, a real application is provided.

Key Words: Simple Linear Regression Model, Periodically-Correlated Errors,

Cochrane-Orecutt procedure, Relative efficiency, Monte-Carlo simulation.
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CHAPTER 1

Introduction

1.1 Introduction

Regression analysis is a very important statistical method that investigates the
relationship between a response variable, usually denoted as Y, and a set of other
variables named as independent variables or predictors, usually denoted by X;, X, ...,
Xp- An important objective of the builting model is the prediction of Y for given values

of the predictors.

The simple linear regression model is the simplest regression model in which we
have only one predictor X, This model, which could be the most common in practice,

written as:

Y, =8+ X, +¢,, t=1,2,..,n ‘ (1.1

where (X; ,Y;) are the values of the predictor and response variables in the & trial,
respectively, PBop and B; are unknown parameters and &'s are usually assumed iid N(Q,
o?) specially for inference purposes. The variable X is usually assumed fixed and non-

random. For several predictors, the multiple linear regression model is written as:

Y, =B+ B Xy + B X, +. 4B, X, 46, t=12,.,n

where Y, is the value of the response variable in the t™ trial, B, By, ..., Pp are unknown
parameters, Xy, Xa, ..., Xpt are the values of the predictor variables in the t* trial and

£t 18 a sequence of uncorrelated random errors with mean zero and variance . For the
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estimation of regression model there are two common methods, the first is the least

squares (LS) method, which relies on minimizing the sum of squares of errors. For the

simple linear regression model (1.1), the LS estimators of By and B, are:

~ —

B, "-‘Y_.Blf

and ' ' (1.2)

D, - Xy, - 7)
ﬂ] - 1=1 - — .
X, -X)*

=1

The second method is the Maximum Likelihood (ML) method, which relies on
maximizing the likelihood function of By and B; and we use this method when the

functional form of the probability distribution of the error terms is specified. Under the
normality assumption of errors, it can be shown that 3, and j3, above are also the ML

estimators of By and B; (Kutner et al., 2005, p. 31-32).

In turn, the fitted regression model is written as:
};r = ﬁ'\'o + ﬁlX '
Thus, the estimated errors or residuals, denoted by e;, are defined as:

e =Y -V, t=12,..n

After fitting the regression model, an important step in model building and

diagnosis is to check for the assumptions of the model, namely; independence,
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normality and constant variance of errors. The residuals of the fitted model play a

primary role for this purpose. Several graphs and tests for residuals may be used to
examine these assumptions. These techniques are usually known as residual analysis. In
particular, to examine the independence of error terms we use the plots of residuals
against time usually named as the residual plot. An important test specifically designed
for testing the lack of randomness in residuals, is the Durbin-Watson test (D-W test).
For a detailed account on various methods for the assessment of model assumptions see

(Kutner et al., 2005, p. 103-115).

In this research we will study the power of the D-W test assuming that the errors
are dependent (autocorrelated) exhibiting various time series models. Those models are
explained in the next section. Therefore, we postpone the discussion of D-W test to the

next chapter.

When the assumptions of the regression model are not valid there exist several
remedial measures. When the error terms are correlated, a direct remedial measure is to
work with a model that calls for correlated error terms. In the next chapters we will
explain and elaborate on one of those methods named as Cochrane-Oreutt procedure.

For more details on such issues see (Kutner et al., 2005, p 127}.

1.2 The ARIMA and PARMA models

The seasonal autoregressive integrated moving average (ARIMA) model is the
well-known extension of the ordinary autoregressive moving average (ARMA) model

that is suitable for seasonal time series. The seasonai-ARIMA model of orders (p, d, q)

x (P, D, Q) can be written as:
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D,(B")¢,(B)1-B) (1-B* Y¥X,=6,+0 o(B”)6,(B)a,, (1.3)

where ¢,(B), 6 (B), ®,(B") and ©,(B*) are the ordinary AR, ordinary MA,
seasonal ‘AR and seasonal MA polynomials, respectively, B is the backshift operator,
is the numb.er of periods, d and D are the ordinary and seasonal differencing orders -
and {a, } is the white noise process with zero mean and variance o7 and 0 is cohstant

(Box et al., 1994). The most common values of the period © in practice are 4 or 12
corresponding to | the quarterly or monthly time series, respectively. The pure
autoregressive model is a special case of the ARIMA model where d; P,D, g and Qare
set to zero in (1.3). In this research we are concerned with the following three models
which are special cases of (1.3); namely; the autoregressive model of order 1 (AR(1))

given by :
X,=C+4,X,, +a, , (1.4)
the moving average model of order 1 ( MA(1)) given by:
X, =C+a,-8a_,, (1.5
and the mixed autoregressive moving average model ( ARMA(1,1)) given by:
X, =C+4 X, +a -Ba,. (1.6)

The periodic autoregressive moving-average PARMA model is an extension of the

ordinary Box-Jenkins ARMA model which is suitable for modeling seasonal time

series. The PARMA,(p(v), g(v)) model is written as;

-4¥)B~ .. =4, )B™ )Xo, — 1) =(-GWNB~ ... ~6,,0)B )., (L7)
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where ® denotes the number of period, v=1, 2, ..., ® denotes the season, k denotes the

year, {a,,., } is & zero-mean white notse process with periodic variances &2 (v), p(v)is
the AR order for season v and q(v) is the MA order for season v, 1, is the mean of
season v and ¢, V), -ves 8,6, (V) and 8;(v), ..., B6(V) are the AR and MA parameters of

season v, respecﬁvely. For more details on PARMA models, see Franses and Paap

(2004).

The periodic autoregressive model (PAR) is a special case of the PARMA model.
In equation (1.7) setting q(v) = 0 for each v=1,2,..., ©® we get the equation of the

PAR(p(v)) written as:

p¥) ’

K —H, = Z ¢j(V)(XkaH-v-~l —#v-j)+akm+v‘ (1.8)
el

For example, the PAR(1) model can be written as:
_Xh»v —H, =¢l (V)(kaw-l _pv-l)+akm+v' (19)

In fact, this equation can be written as w equations. For instance, the zero-mean

PAR4(1} can be written as:

Xpn =0 (HX sk-nea T8y
X2 =G (DX 4y + 400
Xopa =) X gy +04i03

X4Ic+4 = ¢l (4)X4t+3 + a4k+4

fI;ﬁ, (v) <1 (Obeysekera and Sals, 1986).

vzl

which is periodic stationary if
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PARMA models are not stationary in the ordinary weak sense. They are rather
examined for a weaker type of stationarity named as periodic stationarity. This means

that the mean and the variance of the time series is constant for each season and

periodic with period ®and the auto-covariance function depends on the time lag and

season only (Ula and Smadi, 1997).

If the period =1, then the PAR(p) model reduces to the ordinary AR(p) model.
For more details on PARMA models see for example Pagano (1978), Tiao and Grupe

(1980) and Franses and Paap (2004).

1.3 Literature review

The regression models with correlated errors have been studied by many authors.
Mohammed and Ibazizen (2008) considered a Bayesian analysis of regression models
with errors following first-order autoregressive model. Kayode (2008) studied the
estimation of linear models when stochastic regressors thaf are correlated and the error
terms are autocorrelated. Huitema and McKean (2007) studied a wide variety of
ARMA models for the errors associated with time series regression models. Stocker
(2007} ihvestigated the OLS method for stationary dynamic regression models, where
the errors follow a stationary ARMA process. Fried and Gather (2005) discussed the
robust estimation of a linear trend when the noise follows an autoregressive process of
first order. Yue and Koreisha (2004) studied asymptotic and finite-sample properties of
predictors of regression models with autocorrelated errors, Gulhan and Pierre (2001)
studied the efficiency analysis of many estimation procedures for linear models with
autocorrelated errors. Smith et al. (1998) proposed the Bayesian approach for non-

parametric estimation of regression models with autocorrelated errors. Ohtani (1950)
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examined the small-sample properties of the generalized least squares (GSL) estimators

and tests of individual regression coeffictents with autocorrelated errore.

1.4 The Problem of our research and objectives

In this research, we propose the idea of perjodically autocorrelated errors in
regression model. The D-W test is used to test if the errors are autocorrelated, i.e., the
errors follow an AR(1) model. Here, we assume that the errors of the regressibn model

follow the PAR,,(1) model. Writing the time t as ke+v; the errors {&:} follow:

5km+v = ¢1 (V)gkmﬂf-.l + aw.q.v ’ (1 .iO)

which is ﬁe same as (1.9) with p,=0, v=1, 2, ....®.

The essence of (1.10) is that the errors are periodically autocorrelated which means
that the autocorrelations among successive errors changes from one season to another.
For example, assuming that {Zyn.} is a monthly time series, then periodic
antocorrelation means that Corr( Ziaww , Zizkw-1 ) is not constant for v=1, 2, ..., 12.

McLeod (1995) suggests a simple graphical method to detect periodic autocorrelations

in time series. For instance, for monthly time series, he suggested to sketch the scatter

plots of the time series values for (Feb vs Jan), (March vs Feb), ..., (Dec vs Nov). If
those scatter plots exhibit different patterns of bivariate relationships, then this may

lead to periodic autocorrelations in the time series.

In addition, McLeod (1995) proposed a test of periodically autocorrelated errors.
McLeod proposed to apply this test on the residuals resulted from fitting seasonal
ARIMA models for some seasonal time series. If significant, this test will indicate that

the residuals are periodically autocorrelated and therefore 2 PARMA model should be
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considered for modeling this time series in place of the seasonal ARIMA mode!. This

v . ]
test will be used later on the errors of the regression model when Y, is & seasonal time

series.

In this research, we will consider the simple linear regression model (1.1) and
assume that {Y;} is a seasonal time seties with number of periods o, X, is assumed to
be non—rﬁndom and {g;} follows a PAR,(1) model. Next, we interest in estimating the
parameters Bo, B1, a2(v) and @,(V), v=1, 2, ..., @ of the regression model under this
setting. We will also examine the behaviors (powers) of D-W test for various PAR(1)
models. For the latter objective, we will use Monte-Carlo simulation assuming that {g,}
follows the PAR,(1) model (1.10) by manipulating the values of parameters

& (D0, (@) as well as o2(v).
1.5 Overview

In this chapter, we have reviewed the regression analysis, the ARIMA model, the
ordinary ARMA model and its extension PARMA model which suitable for modeling
seasonal time series. In chapter two we discussed the time series and dynamic regression
models and studied the Durbin-Watson test and its power for errors following the

models WN, AR(1) , MA(1) and ARMA(1,1).

In chapter three, we study the simple linear regression model with errors following
PAR4(1) model. We estimated the variances and the seasonal autocorrelation function
(SACF) for PAR,(1), then we used relative efficiency to compare between the least
squares estimation for the parameters for the WN, AR(1) and PAR4(1) models. Using
Monte-Carlo s.imulation technigue, we compute the power of Durbin-Watson test with
errors following PAR4(1) model and applied the work to higher orders PAR model. The

studying of the Cochrane-Orcutt procedure for AR(1) and the generalization the work
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for PAR4(1), then using Monte-Carlo simulation to compare between the least squares

method and Cochrane-Orcutt method via bias and MSE are done in chapter four. In

chapter five we applied the generalized Cochrane-Orcutt method on real time series
data.

Finally, chapter six gives the results, conclusions and some ideas for future work.
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CHAPTER 2

The Power of Durbin-Watson test for ARMA Models

2.1 Introduction

In this chapter we discuss time series regression models. Such models relate the
dependent variable Y, to functions of time. Also, we will study an important diagnostic-
checking method of independence condition among errors using D-W test and study the

power of this test with errors following some ARMA models using Monte-Carlo

simulation.

2.2 Time series regression models

When a time series exhibits a deterministic trend, then the trend can be modeled
using polynomial functions of time. In particular, the no trend, linear trend and

quadratic trend models are famous special cases of this model.

We sometimes can describe a time series Y, by using trend model. The trend model

is defined as follows:

Y,=1R +¢,
=6+ B+ Bt 4.4+ Bt +E,, t=1,2,.,1u

where Y, is the value of the time series in period t, TR, is the trend in time period t and
& is the error term in time period t. these models are found in (Bowerman et al., 2005,

p.279).

When the time series exhibits deterministic seasonal vartiation, we often use the

following additive model:

10
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V=IR 48N, +¢, t=1,2,.,1

where Y is the observed value of the time series in time period t, TR, is the trend in
time period t, SN; is the seasonal factor in time period t and & is the error term in time
period t. One way to model éeésonal patterns is to use dummy variables. Assuming that
there are L seasons (months, quarters) per year, we state the_ seasonal factor SN; as

follows (Wei, 1990, p.159):

SN, =B,X,, +ﬂ,2X,u + oot B X, t=1.2,.0m

where Xs14, Xo2 6, - .- Xor-1) are dummy variables. This model assumes constant
variance and seasonality of the time series, If the seasonality is increasing we usually

use In(Yy) in place of Y..

An altemative method for modeling seasonality is to use a linear combination of
trigonometric functions. Two such models that can be useful when modeling constant

seasonal variation are;

~|¥

¥=1R +:Bz‘gi”(

J«}- ,BSCos(—zg-)+s,

] + B Cos [_2;_11_) +B.5in [i;‘f) +B.Cos (%) +E,

and

Ey

Y=1R +ﬁ25fﬂ(

t-..

Extra Sine and Cosine terms can also be added for modeling more complicated

seasonality ( Bowerman et al., 2005).

The trend component (TR,) in the above two models is usually modeled by linear
or quadratic functions of t. Besides, the parameters of all models above are usually

estimated using the ordinary least squares method assuming that & are iid N(0, o.%).

11
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2.3 Dynamic regression models

Assuming that {(X,,Yy); t<Z} is a bivariate stochastic process from which a
realization (bivariate time series) of length n is ébserved then the simple regression
model (1.1} along its standard assumptions is usually invalid, simply because X, is
random. In fact, in this case, this model is known as the stochastic (dynamic) regression
model which has different assumptions and implications than the ordinary regression
model. However, in the literature of time series analysis, the simple linear regression
model (1.1) is stiil applied under several situations. The first one is that assuming that
X, is a non-random (covariate) time series. For instance, X; may be a deterministic
function of time such as deterministic trend component or seasonal dummies. Another
case is that viewing the regression model as 2 conditional relationship given X, In
many applications such covariate time series {X} is called a leading factor of Y, (Cryer

and Chan, 2008, p.265).

2.4 The Durbin-Watson test

We have seen in chaptel; one that the ordinary regression model has several
assumptions including the assumption of independence among errors. An important
diagnostic-checking method of this assumption is the D-W test which is very common
specially when the data are related to time as in the time series regression models

explained above.

When dealing with the D-W test, we use the term autocorrelated errors in place of

the term dependent errors. Thus the null and alternative hypotheses in D-W test are:

Hy: Errors are not autocorrelated vs H;: Errors are autocorrelated

12
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In fact, the D-W test assumes that the errors follow the first-order autoregressive

(AR(1)) model), written as

g =ge,_,+a,t=1,2,..,n (2.1)

where {4, } is a white noise process assumed to be iid N(0, o) independent of g, and ¢
is the AR parameter with |gi<1. Therefore, if ¢ = O then & = @, and the errors are

considered un-autocorrelated (independent). It can be shown that the first order

autcorrelation of {g} is,

p=Corr(e,,¢,,)=¢.

In fact, the D-W test can be used to carry-out three different tests:

Test 1: Test of positive autocorrelation

Hp: ¢=0 Vs Hi: ¢ >0
Test 2: Test of negative autocorrelation

Hp: ¢ =0 vs Hi: ¢ <0
Test 3: Test of autocorrelation

Ho:g =0  vs Hy: ¢ #0.

Based on the fitted regression model, the residual plot is usually a useful method

- for detecting autocorrelation among residuals. Figures (2-a) and (2-b) are two residual -

plots that indicate respectively positively autocorrelated and negatively autocorrelated

13
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residuals. It is found in practice that the positive autocorrelation is the most frequent

type, so that the most common D-W test is Test~(1) above (Bowerman et al., 2005).

Figure 2.1: The residual plot of autocorrelated residuals

: /\\/ /\\/ | \\/j\w/\\/iv/\\//xv/\y/\
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(a) Positively autocorrelated residuals (b) Negatively autocorrelated residuals

The D-W test statistic is (Durbin and Watson, 1950):

i(er —er-1)2
D= ¢=2
2

#=]

]

which is compared with special critical values according to the types of the regression
model and test. Exact critical values of the D-W test are difficult to obtain, but Durbin
and Watson (Kutner et al., 2005) have obtained lower and upper bounds d; and dy such
that a value of D outside these bounds leads to a definite decision. The decision rule for

testing positively autocorrelated is:

IfD>dy conclude Hy if D < dp conclude H; otherwise the test is inconclusive.

Tables of the D-W test containing the limits dy and dy, are available in most regression
and time series books for selected the values of o, n the number of observation and k

the number of predictors. For example see ( Kutner et al., 2005, p.487).

14
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2.5 Power of D-W test with errors following some ARMA models

The D-W test with errors following ARMA model have been studied by many

authors. Blattberg (1973) studied the power of the D-W statistic for non-first order

D-W and Geary tests.

In this section we will use Monte-Carlo simulation to examine the power of D-W
test for errors following various ARMA model. We will consider the WN, AR(1),
MA(1) and ARMA(1,1) processes. The main objective of considering various ARMA
models is to investigate the power of D-W test for various autocorrelations—strdctures.
Table (2.1) reviews the ACF formulas for some selected ARMA models. For a‘detailed

account on ACF of various ARMA models and its properties, see Cryer and Chan,

* serial correlation alternatives. Schmidt and Guilkey (1975) compared the powers of the

2008.
Table (2.1): The ACF of some ARMA models
Number of Model Model ACF
1 L, k=0
WN =q"
Pr {0, k=0
2 AR(1) L, k=0
A P
1, k=0
3 MA(1) = ya
SO Pl k=1
0, k=2
4 1, k=0
ARMA(1,1) £ =(1-606-0) 1,
=g k21
1-20¢+ 6
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Therefore, we will carry out our study based on the following two cases:
Case 1: The models:

Model 1: WN process, iid N( 0, o?) with ¢°=1.

‘Model 2.: AR(1) with ¢ =-03,-0.2,02, 0.,

Model 3: MA(1) with©=-0.8,-0.2,0.2, 0.8.

Model 4: ARMA(1,1) with (¢ , 6) = {-0.8,-0.2, 0.2, 0.8}.
Case 2: The AR(1), MA(1) and ARMA(1,1) models with parameters as

defined in Table (2.2) below.

Table (2.2): Models of Case 2 with the same p,

AR(D) MA(1) ARMA(L,1) b1
¢ 9 ¢ 8
0.000000000 0.000000000 0.1 0.1 0.000000000
0.075675676 -0.076114092 0.8 -0.9 0.075675676
0.098000000 ~0.098959716 0.1 02 0.098000000
0.140000000 -0.142857143 0.9 0.8 0.140000000
0.184000000 -0.190690788 02 04 0.184000000
0.204210526 -0.213520707 0.3 0.1 0.204210526
0.246000000 20263017889 0.3 06 0.246000000
0.260000000 -0.280449500 0.8 0.6 0.266000000
0.309677419 -0.346955888 0.4 0.1 0.309677419
0.360000000 -0.425036024 0.7 0.4 0.360000000
0.400000000 -0.500000000 08 | 05 0.400000000
0.440000000 0.596620814 06 | 02 0.440000000
0.471641791 -0.708177196 0.7 0.3 0.471641791
0.490905091 -0.825179509 0.2 0.4 0.490909091

In Case (1) our objective is to investigate the effect of the main parameters in each
model on the power of the D-W test. We have selected the values of the parameters

arbitrarily but satisfying stationarity and invertibility conditions.

16



© Arabic Digital Library - Yarmouk University

In Case (2) we have selected a list of different AR(1), MA(1) and ARMA(1,1)

models such that they agree on the vaiue of the first lag autocorrelation ( p; ). Table
(2.2) shows the parameters of the selected models. It can be seen that each row in the
table defines three different models but have the same p; value (given in the last
column). The selection of these models is mainly based on the formulas of the

theoretical ACF of various models given in Table (2.1). Besides, we have restricted
ourselves to models with p, <0.5 because for the invertible MA(1) model it is known

that |p,] <0.5.

As far as the simulation-work is concemned; 2000 repetitions each of realization

length n (30, 50, 100) pairs of data (X,Y) are simulated as follows:

(1) Set the predictor vatues X from 0 to 10 of n equally distant values, denote as X;,
X2 ooy X

(2) Generate a realization of length n {&,, &2, ...,&n } from one of the models above.

(3) Compute Y; = 2+5Xite; ; i=1, 2, ..., n.

(4) Fit the simple linear regression model using the least squares method and
compute the residuals,

(5) Compute the D-W test-statistic (of either type; positive autocorrelated or two-
sided) and then compute the p-value of each test.

(6) Compute the proportion of significant tests ( p-value < 0.05) for all repitions
which estimates the power of the test .
The simulation results for Case (1) are presented in Tables (2.4)-(2.7) and

Figures (2.2)-(2.3), while the results for Case (2) are presented in Tables (2.8)-(2.10)

and Figure (2.4).

17
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Table (2.3): The first three autocorrelations for the models in Case (1)

Model ] P P
WN 0.0000 0.0000 0.0000
0.8 -0.8000 0.6400 0.5120
0.2 -0.2000 0.0400 -0.0080
AR®D) ¢ 0.2 0.2000 0.0400 0.0080
0.8 0.8000 0.6400 0.5120
0.8 0.4878 0.0000 0.0000
0.2 0.1923 0.0000 0.0000
MA® ® 02 20.1923 0.0000 0.0000
0.8 -0.4878 0.0000 0.0000
¢ =9 0.0000 0.0000 0.0000
(-0.8,-0.2) 40,7000 0.5600 -0.4480
(-0.8,0.2) -0.8529 0.6823 -0.5458
(-0.8,0.8) -0.8986 0.7189 0.5751
(-0.2,-0.8) 03818 -0.0763 0.0152
(0.2,0.2) 0,3714 0.0742 -0.0148
ARMA(L1) ($.0) (-0.2,0.8) -0.5918 0.1183 -0.0236
(0.2,-0.8) 0.5918 0.1183 0.0236
0.2,-0.2) 0.3714 0.0742 0.0148
(0.2,0.8) -0.3818 -0.0763 0.0152
(0.8,-0.8) 0.8986 0.7189 0.5751
(0.8,-0.2) 0.8529 0.6823 0.5458
0.8,0.2) 0.7000 0.5600 0.4480

Table (2.4): The power of D-W test, errors following white-noise model (Case 1)

n Two-sided Positive
30 0.0485 0.0465
50 0.0500 0.0455
100 0.0605 0.0550
500 (.0540 0.0530

1000 0.0530 0.0480

Table (2.5): The power of D-W test, errors following AR(1) model ( Case 1)

Two-sided Positive autocorrelated
n n
P o 30 50 100 30 50 100
0.8 | -0.8000 |0.9750] 0.9995 | 1.0000 | 0.0000 | 0.0000 | 0.0000
-0.2 | -0.2000 ] 0.1505 | 0.2510 | 0.5025 | 0.0080 | 0.0030 | 0.0000
0.2 | 02000 | 0.1580| 0.2605 | 0.5150 § 0.2445 | 0.3795 | 0.6105
0.8 0.8000 }0.9605 | 0.9990 | 1.0000 | 0.9740 | 0.9995 | 1.0000
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Table (2.6): The power of D-W test, erors following MA(1) model ( Case 1)

Two-sided Positive autocorrelated
n n
0 1 30 50 100 30 50 100

0.8 1 04878 1 0.7760 [ 0.9630 | 1.0000 | 0.8670 | 0.9835 | 1.0000
0.2 | 0.1923 | 0.1610 | 0.2385 | 0.4745 | 0.2560 | 0.3325 | 0.5960
0.2 | -0.1923 | 0,1360 [ 0.2345 | 0.4675 { 0.0050 | ©.0030 [ 0.0000
0.8 | -0.4878 | 0.6535 | 0.9335 | 0.9995 [ 0.0000 | 0.0000 | 0.0000

Table (2.7): The power of D-W test, errors following ARMA(1,1) model ( Case 1)

Two-sided Positive autocorrelated
‘ n n
0 P 30 50 100 30 50 100

-0.8 | 0.0000 | 0.0510 | 0.0430 | 0.0480 { 0.0495 0.0515 | 0.0535
0.8 | -0.2 | 0.7000 | 0.9110{ 0.9945] 1.0000 | 0.0000 | 0.0000 | 0.0000
0.2 ] -0.8529 | 0.9910 | 1.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000
0.8 | ~0.8986 | 0.9990 | 1.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000
0.8 | 0.3818 | 0.5530 | 0.8040 | 0.9855 | 0.6870 | 0.8855 | 0.9960
0.2 | -0.2 | 0.0000 |0.0455| 0.0500 | 0.0500 [ 0.0500 [ 0.0375 | 0.0485
0.2 | 03714 | 043601 0.6925 | 0.9605 | 0.0005§ 0.0000 | 0.0000
0.8 { 0.5918 | 0.8755 | 0.9900 | 1.0006 { 0.0000 | ©0.0000 | 0.0000
0.8 | 0.5918 [0.9305 | 0.9940 | 1.0000 | 0.9625 | 0.9985 | 1.0000
0.2 | 0.2} 03714 | 0.4420( 0.7390 | 0.9645 | 0.5820 | 0.8280 | 0.9820
0.2 ] 0.0000 | 0.0465 | 0.0460 | 0.0495 | 0.0565 | 0.0480 | 0.0485
0.8 | -0.3818 | 0.3820 ] 0.7010 | 0.9760 | 0.0000 | 0.0000 | 0.0000
0.8 | 0.8986 10.9995] 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000
08 |-0.2 | 0.8529 | 0.9500| 1.0000 | 1.0000 | 0.9985 | 1.0000 | 1.0000
02 | 0.7000 | 0.8005| 0.9750 | 1.0000 | 0.8590 | 0.9865 | 1.0000
0.8 | 0.0000 [0.0520 | 0.0465 | 0.0450 {0.0555| 0.0570 | 0.0480
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Table (2.8): The power of D-W test for AR(1) model for n=100 ( Case 2)

¢ N Two-sided | Positive autocorrelated
0.0060000000 | 0.000000000 0.0525 0.0480
0.075675676 0.075675676 0.0965 0.1815
0.098000000 0.098000000 0.1540 0.2575
0.140000000 0.140000000 0.2625 0.3810
0.184000000 0.184000000 0.4410 0.5525
0.204210526 0.204210526 0.4920 0.6515
(.246000000 0.246000000 0.6665 0.7700
0.260000000 0.260000000 0.7020 0.8235
0.309677419 0.309677419 0.8505 0.9150
0.360000000 0.360000000 0.9445 0.9675
(.400000000 0.400000000 0.9710 (.9885
0.440000000 0.440000000 0.9850 0.9965
0471641791 0.471641791 0.9945 0.8970
0.490909091 0.450909091 0.9990 0.9950

Table (2.9): The power of D-W test for MA(1) model for n=100 ( Case 2)

0 P Two-sided | Positive autocorrelated

0.000000000 0.000000000 0.0525 0.0525
-0.076114092 0.075675676 0.1180 0.1935
-0.098959716 0.098000000 0.1600 0.2480
-0.142857143 0.140000000 0.2755 0.3810
-0.190690788 ' | 0.1840G00000 0.4510 0.5585
-0.213520707 0.204210526 0.5140 0.6540
-0.263017889 0.246000000 0.6825 0.7790
-0.280449500 0.260000000 D.7740 0.8275
-0.346955888 0.309677419 0.8835 0.9415
-0.425036024 0.360000000 0.9695 0.9855
-0.500000000 0.400000000 0.9915 0.9955
0.596620814 0.440000000 0.9995 1.0000
-0.708177196 0.471641791 1.0000 1.0000
-0.825179509 0.490909091 0.9995 1.0000
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Table (2.10): The power of D-W test for ARMAC(1,1) model for n=100 ( Case 2)

4 o ot Two-sided | Positive autacorrelated
0.1 0.1 0.000000000 0.0480 0.0530
-0.8 0.9 0.075675676 0.0980 0.1615
-0.1 -0.2 0.098000000 (.1615 0.2260
0.9 0.8 0.140000000 0.2055 0.2820
0.2 -0.4 0.184000000 0.4495 0.5850
0.3 0.1 0.204210526 0.4900 0.6330
03 ] 0.6 | 0.2460000060 0.7115 0.8145
0.3 0.6 0.260000000 0.5870 0.6760
0.4 0.1 0.309677419 0.8360 0.9050
0.7 0.4 0.360000000 0.8745 0.9260
0.8 0.5 0.400000000 0.8885 0.9350
0.6 0.2 0.440000000 (0.9825 0.9895
0.7 0.3 0.471641791 0.9815 0.9885
0.2 -0.4 0.4520909051 0.9995 1.0000

) _- . 'hm sided . - . : _. ..!’elh.iw autocorrelated
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Figure (2.2): The power of D-W test for AR(1) model ( Case 1) with n=30 (—-),
n=30 (—-), n=100(--)
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Figure (2.3): The power of D-W test for MA(1) model ( Case 1) with n=30 (—),
=50 (-~ -), n= 100 (- -)
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Figure (2.4): The power of D-W test for models: AR(I) (~-), MA(1): (- -) and
ARMA(I,1): (—) models in Case 2 with equal p; (x-axis)
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2,6 Results and discussion
In view of the simulation results, we can see that in general the power of the D-W
test increases when the rez—ilization length increases. In Table (2.4) the power of the D-W
test is close to 0.05 for both types (positive or two-sided) which is expected since the
model is WN. For the AR(1) model, Table(2.5) and Figures (2.2) show that the test of
positive-autocorrelation are si gniﬁcaﬁt for the case with 4 > 0 with increasing power as
¢ approaches 1. However, for the two-sided tcsf, the power is symmetric in view of ¢

with increasing power as |gl approaches 1.

For the MA(1) model, Table (2.6) and Figure (2.3) show nearly similar results to
the AR(1) model. That is, when the first agtocorrelation (p1) was positive, which
corresponds to negative € as seen in Tables (2.2) and (2.3), then both tests of two-sided
and positive autocorrelation were significant. Also, for positive 0 which corresponds to
negative p;, the two-sided test was significant but the test of positive autocorrelation

was not.

The results of the ARMA(1,1) model that presented in Table (2.7) shows -in
general- similar patterns as the previous models. The case of ¢ =0 makes the ACF of
the ARMAC(1,1) model identical to the ACF of the WN process. This explains the
power value of nearly 0.05 in Table (2.7) for these cases. Also, we can see from Table
(2.3) that the largest (possible) value of pj occurs at (4 ,0) = (0.8, -0.8) and the smallest
(negative) value occurs at (¢ ,0) = (-0.8, 0.8). Therefore, it is seen from Table (2.7) that
the D-W test of both types were highly significant for (¢ ,8) = (0.8, -0.8). For (¢ .9)=
(-0.8, 0.8) it is seen form Table (2.7) that the two-sided test was highly significant but

the test of positive autocorrelation has a power close to zero.
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It can also be seen from Figure (2.2), Figure (2.3) and Table (2.7) regardless of

model type that the power of D-W test of either types were more stable for various
values of n when p; is close to zero or |p,| is close to one. For moderate to small values

of p; (as p1=0..2), it can be seen that the power of D-W test of either types was highly

affected by n.

The results of Case 2 which shown in Figure (2.4) indicates that there is a minor
impact of the values of ¢ and 0 on the type of model on the power of D-W test when p,
is the same. When p; increases the power of the D-W test is also increasing for both the
two sided and positive autocorrelated tests. A closer look at the power values shows
that it was the largest for the MA(1) model. Also, the power values for the MA(1) and
AR(1) models seem systematically increase as p; increases. However, for the
ARMA(1,1) models, the power values were the smallest in almost all cases with some

apparent fluctuations, specially for moderate values of p.

Finally, we close this section with two main points. The first is that the correlation
structure of the error terms has a minor effect on the power of D-W test in simple LR
model. We expect this result to be true for multipie LR model. The second point, which
is a by-product of the first, is that the D-W test is blind for the autocorrelation type of
errors. This means that, although the hypothesis of D-W test originally assumes an
AR(1) model of the errors, _the test if significant does not necessarily imply an AR(1)
errors or it is uncapable for the identification of the model of the errors. A similar
conclusion was reported by many researchers as for example (Blattberg, 1973, pp. 508-

515).
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CHAPTER 3
Simple Linear Regression Model with Errors Following PAR(1)

3.1 Introduction

In this chapter, we will study the idea of periodically autocorrelated errors in
regression models. We will study the properties of least squares estimators when the
error terms follow WN, AR( 1) and PAR(1) models. Furthermore, a comparison
between these models is carried out. through relative efficiency (RE) by using

simulation technique.

3.2 Simple linear regression model with errors following PAR(1)

Now, we consider the simple linear regression model (1.1) but assuming that the
errors follow the zero-mean PAR(1) model defined by (1.6). That is, writing t in (1.1)

as kotv, then the error terms {&} is modeled as:

Eivir = ¢1 (v)e kosv1 T Pppays (3.1)
where ® denotes the number of periods, v=1,2,...,® denotes the season, k denotes the

year, {axow} is 2 zero-mean white noise process with periodic variances ¢2(v) and

¢,(v) is the AR parameter of season v with

[Taw)<1.

=l

The essence of (3.1) is that the errors are periodically autocorrelated which means
that the autocorrelations among successive errors changes from one season to another.
For example, Corr(exp+, Eka+r ) may differ from Corr(exes3, kg ) although the two

pairs of errors are both one-time lag distant.

We expect that such generalized regression model may apply for seasonal time

series {Yi}. Among others, McLeod (1995) and Frances and Paap (2004) proved that
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many seasonal time series may posses significant periodic autocorrelations. Besides, it
is found that such periodicity is sustained even after fitting some seasonal models. In an

earlier work, Tiao and Grupe (1980) called such patterns in autocorrelations as hidden

periodicity that may not be captured by ordinary seasonal models.

The errors model in (3.1) reduces to the AR(1) model if ¢ (V) and o2(v) are

constants for all seasons v.

In the next section we will review some results for the estimation of the PAR,(1)
model. Later on, we will study the LS estimators for various models of errors including

the PAR(1) model.

3.3 Estimation in PAR,(1) processes

The method of moments is one of the most common methods of estimation in

statistical inference. It is also common in the context of time series analysis.

The seasonal autocorrelation function (SACF) depends on the time lag and season

only and is defined as:

¥ v

PA) = COM s i) = o o)
] 0

(3.2)

where v;(v) = Cov( Xy, Xue+vj ) denotes the seasonal autocovariance function and

Yo(v} denotes the variance of the process for season v and time lag j=0,1,...

Based on an observed realization Z1, Zy, ..., Zmq the moment estimator of p, () is

— Ci(v)
rk(‘.}) - \/CO(V)CO(V-—k) s (3.3)
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where

m=1

Z(zjmv - Z—v )2
C, (===

(34)

and

m=l

Z (ZJMV - Zy )(ij-k - zv-k)
C, ()=

m-—1 ?
where Z, is the sample mean of data in season v and m is the number of years of data.

It can be shown that r (v)are asymptotically unbiased and consistent estimators

(McLeod, 1995).

As far as the PAR,(1) is considered, it can be proved that the first lag

autocorrelations are given by:

Yov=0)

V) =8, (v) e

(3.5)

for v=1,2,...,m. Note that in this case the first order autocorrelation are not the same as

AR parameters but a function of them. For the computation of py(V), given ¢ (v) and

c2(v), (3.5) can be used along the fact that for the PAR,(1) model:

7o) =AOF RE-D+G0) 5 v=l, .y (3.6)

This system of o equations can be written as AT, =X where
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1 0 0 . -E®] @ T (a2(t) |

-8 1 ¢ . 0 ¥(2) 0’3(2)

0 4@ 1 . 0 73 A€
A=, | T=]. . =1,

0 -dl@) 1 BRG] o2 (@) |

As A is non-singular, we have

L, =47%. (3.7)

For the estimation of @, (V) in the PAR,(1) model, the moment estimator of ¢, (+')
is nearly the same as the least squares estimate obtained by regressing Zigwy 0n Zieiv
in a season-wise manner. These estimators are also the conditional maximum likelihood

estimators when the WN process is Gaussian {(Smadi, 2005).

Thus, an alternative estimator of p;(v) for the PAR(1) is obtained by using (3.5)

and by replacing @, (v), 7,(v)and y,(v —1) by their estimates,

3.4 Properties of least squares estimators for various models of errors

In chapter 1, we defined the simple linear regression model (1 .1) with uncorrelated
errors, mean zero and constant variance o7 for errors. We used the least squares (LS)
method to estimate the regression model. It is known that the least squares estimators
for the standard regression model are unbiased. They are in fact the best linear
unbiased estimators (BLUE). More details about those estimators are found in (Kutner
et al., 2005, p. 41-49).

Now, we will study the properties of least square estimators for the simple linear
regression when the errors following the zero-mean AR(]) and the zero-mean PAR (1)

models.

28



© Arabic Digital Library - Yarmouk University

Definition (3.1): Let { X,} be a stationary stochastic process. Then the autocovariance

function (ACVF) of X, is defined by:
}’k = COV(X"X‘_‘,) ) k = 0, 1, e

For more details about stationary stochastic process and their ACVF, see for example (

Wei, 1990)
Theorem (3.1): For the generalized linear regression model ¥, = 8, + 8, X, +¢,

with {& } being any stationary stochastic process with mean zero and ACVF y,, then

the LS estimators /4, and S, are unbiased and

Va"(ﬁo) = 20370 +2 chzcﬂ’r—j (3-8q)
1=] t>} .

Va"(ﬁl) = Zb.«z?’o +2 Zzb:bﬂ':—; (3.8b)

t=1 1>

with _
c, =L _p X (3.9)
n s
b, = — X=X (3.9b)
Z (Xz - X—)z

Praof: It can easily be shown that

B =§_ljc,Yt and B =5y,

r=i

where ¢; and b, are given by (3.9a) and (3.9b) respectively. Thus,

E(téc) = ic,E(Y‘) = icg By + 5 X)) = ﬂoict +ﬁlictXl'
1=1 =] t=1 t=1

Because, 3 ¢, =1and D cX, =0 then E(B,)=g,.

=] 1=1
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Similarly we can showE(ﬁ’,) = f3,. The result in (3.8) is direct from the fact that [;’0

and B, are linear function in Yy, Y3, ...,Ya With coefficients as in (3.94) and (3.9b)

respectively. Q. E.D.

Corollary (3.1): For the generalized regression model with {&} following the zero-

mean AR(1) model, £, and f3, are unbiased and the variance of £, and J, are:

ot

P O': t-j
Varthy) =t { o Yy M, ] @.11)

t >

where §,, = Z”:(X,- _Y)ls
I=1

M, = (X, - X)x, - X) (3.12)

and

Syx X

Ky =%~ {(x, - X)+(x, X))+——(X ~Xx,-X). QED. @13

It can be seen easily that Var(f,)and Var(f,) above reduce to those of the

standard regression model when ¢ = 0; that is:

- c* (s =
Var(ﬁ0)=g—-[——f +X2] (3’]4‘1)
and
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Var(B,) =~§—- (3.14)

Theorem (3.2): For the generalized simple linear regression model with errors

following a zero-mean PAR,, (1) model, 5, and 3, are unbiased and the variances of

B, and f, are given by:

n m (E-Da+v-1

Var(ﬂo) z?’o("')zc{k-now +2 Z Z Zcu—nmwc }'(j—])aq-v—j(v)l((k l)a)+v - 2 1) (3.154a)

vel k=l J=1

o m (k-Do+v-l

Var(ﬁl) Z?’o(")z - +2 z Z Z (kDo j}’(t—f)m+v-j(v)l((k 1)“""" J’Zl) (3.15b)

vl v=l E=l =l
where
1 = .
Clk-laww = ; - b(k-i).»-wX _ (3.16a)
and
X b=1)ar+y —'X;
Btryun = 5 (3.16b)
Z (X 1 X )2
i=1

Proof: The unbiasedness of the estimators ,5’0 and ,5’1 can be proved in a similar

manner as Theorem (3.1). Now, we want to prove formulas (3.15a) and (3.15b). We

know that

Var(3,) = Zc var(g, ) +2 ZZc c,Covés,, ;) (3.17)

t=1

where c; is as defined by (3.9a).

Now, assuming n=me where m is the number of years of data, then:
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N @ m o m (k-laote-1 .
Var(f, )= ch{i-m«r 7. (V) ""ZZ zc(k-l)awcj?’ (=Dt (V)I((k'l)m tv-j2 1)
ve] k=l ve) kel el
" o m o m {klaoh-l .
Var(fy)=3 10002 €, 20 D CtetiunCi¥iponey M- D+ v-j21)
vl k=1 vel k=l =l

where I(A) is the indicator function. ¥ar(4,) in (3.15b) can be similarly derived. Q. E.

D.

In fact, Theorem (3.2) can also be applied for all periodic-stationary processes with

seasonal ACVF y,(v).
The following theorem is useful for computation of the SACVF ( 7. (v)) for

PAR (1)} models needed for obtaining Var(ﬁo) and Var(ﬁl) when errors are PAR(1)

as in Theorem (3.2).

Theorem (3.3): If {& } follows a periodic stationary PAR,(1) model, then the SACVF
atlagk; y,(v)satisfies: |
7:W)= ¢, (v)y,,(v-1)
= 4GV~ (v -2)..8,(v -k + )y, (v -k). (3.18)

Proof: It is easy to show that for k=1,

71 (V) = COV(Skm_w ’EkaH'V—I)
= cov(¢l (V)Sta-f-v-—l + Liwer ’gtw+v—l)

= ()7, (v~-1)

So that for k=2,
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V2 (V)= Covley,,, €rai)
= Cov(¢] (V)gko)w-l + Loey ’gka;-w-z)
=0 -1)
=8, (V)4 (v -y, (v -2).

Similarly, we iterate k up to zero which gives (3.18). Q. E. D

Definition (3.2): (Rohatgi, 1984; p193) Let él and 5,_ be two estimators of 6. Then the

relative efficiency of 6, with respect to 9, is:

In addition, if @, and 6, are unbiased then

RE(6,,6,) = KEI’@_Q
Var(9,) (3.19)
Therefore and since ,5’0 and f, are unbiased estimators for B, and B, for errors
following WN, AR(1) and PAR(1)} models, we can compare the efficiency of these
estimators using (3.19). For simplicity, the comparison will be carried out with the WN
model being the reference case. Those relative efficiencies are explicitly given in the

following corollary.

Corollary (3.2): The relative efficiency of ﬁ‘o and ﬁ', under AR(1) and PAR(1) models

with respect to the WN model are :

RE[B, (4R, Ao = (1_4(%“_4;22)] ,
[(_g_+fl)+2zzlcd¢r-f]

e
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with K;; given by (3.13),

RE |3, (PARQV), B,(W1V))

“_2[_S£+32]
Sl m

@ m (k~Da+v-]

Z Yo (V)Z c(.t faw T Z Z Z Clt-barvC il k-tywiv-; (v ((k -Do+v-j2 1)

k=1 v=l k=l J=l
REJB (4R, 4 VM) = q=¢)
[1+zs ZZM ¢ _,}
and
RE |B,(PARQY), 5, 07N))]
o’/ S
o m (k=Do+v-] *
Z?’o (V)kz b(k —Hao+y +Z kZ Z b(.t-l)auv 1Y (-l rv—j (V)I((k Do+v-—j2 l)

Now, we illustrate Corollary (3.2) through the following example.

Example (3.1): Consider the simple linear regression model Y=P+ B X, +e,;t=1,

.» 100 with X; =t and

(a) & follow WN with ¢ =16

(b) e follow AR(1) with ¢ =-0.8,-0.6,-0.4, -0.2, 0, 0.2, 0.4, 0.6, 0.8 and gl=16

4
(c) & follow PAR4(1) with H¢,(v)= 0.8, -0.6, -0.4, -0.2, 0, 0.2, 0.4, 0.6, 0.8 and
val

clvy=16,Yv=12,..4.
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Using Corollary (3.2) the relative efficiency defined by equation (3.19) of the LS

estimates ﬂﬂo and /g’, under WN, AR(I) and pqu(l) models are computed and
summarized in Tables (3.1)-(3.3) and Figures (3.1)-(3.2). To make the comparison

more accurate we have fixed Var(g,) for all error models. Besides, we have selected

the ¢'s of the PAR4(1) model such that ﬁgﬁ, (v) takes the same value as ¢ for the

)
AR(1) model. We should emphasize that the objective of this example is for illustration

and investigation,

Table (3.1): The relative efficiency of Bo and [?l under AR(1) mode! with respect

to the WN model
¢ | RE(B,(ARW),B,(VN)) | RE(B,(ARW)), B, (WN))

-0.8 0.123 0.126
-0.6 0.262 0.264
0.4 0.439 0.440
-0.2 0.674 0.675
0.0 1.000 1.000
0.2 1.484 [.481
0.4 2.278 2.267
0.6 3.812 3.775
0.8 8.004 7.810

Table (3.2): The relative efficiency of ﬁo and ﬁ, under PAR4(1) model with respect

to the WN model
$)'s [14.0)| REG.(PAR,Q)). B,(#N)) | RE(B,(PAR, (), 4,(7N))
v=l
-0.99, 1.45, 0.67, 0.83 -0.8 0.146 0.173
0.97, 0.83, 1.70, -0.44 -0.6 1,462 1.473
1.40,-1.12, 0.38, 0.66 -0.4 0.104 0.114
0.57, 0.70, -0.39, 1.28 -0.2 1.236 1,256
0.09, 0.00, 0.00, 0.00 0.0 1.000 1.000
1.90, 0.84, 0.68, 0.18 0.2 5.897 5.807
1.10, 0.26, 1.50, 0.97 0.4 9.512 9.264
1.60, 1.20, 0.65, 0.45 0.6 12.217 11.697
1.30, 0.50, 0.70, 0.93 0.8 8.633 8.394
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to the AR(1) model
h)'s 16,0 REGy(PARWD), By (ARW)) | RECB (PAR, (), A (ARM))
vel
-0.99, 1.45,0.67,083 | -0.8 1.187 1373
0.97,0.83,1.70,-044 | -0.6 5.580 5.580
1.40, -1.12,0.38,0.66 | -04 0.237 0.259
0.57,0.70,-0.39,1.28 | -0.2 1.834 1.861
0.00, 0.00, 0.00, 0.00 0.0 1.000 1.000
1.90, 0.84, 0.68, 0.18 0.2 3.974 3.921
1.10, 0.26, 1.50, 0.97 0.4 4.176 4.086
1.60, 1.20, 0.65, 0.45 0.6 3.205 3.099
1.30, 0.50, 0.70, 0.93 0.8 1.079 1.075
84
3°]
34
* H
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Figure (3.1): The relative efficiency of [;’0 and ﬁ’, under AR(1) model with respect
to the WN model
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Figure (3.2): The relative efficiency of 5’0 and ﬁl under PAR4(1) model with respect
to the WN model

In view of Table (3.1) and Figure (3.1), we can see that the LS estimators ﬁ’o and
[?1 based on AR(1) model are more efficient than based on WN model when ¢ > 0 .
Besides, in view of Tables (3.2), (3.3} and Figure (3.2} we can see that for some cases

the RE for ﬁu and ﬁl were less than one while in other cases was more than one. It is

clear here that the main factor is not the value of ﬁ ¢, (v) but possibly the individual

vel

values of ¢, (v) 's.

Finally, although we show the RE of the LS estimators for various models of errors

we recall that if the errors are not WN and are autocorrelated then the well known
famous properties of ﬁn and ﬁ, for the simple LR model (e.g. BLUE) are not valid as

the assumption of independent errors is no more valid.
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The main conclusion here is that when the errors are autocomrelated then the

ordinary formulas for Var(ﬁu) and Var(f,) are not reliable and may underestimate or

overestimate the actual variances of those estimators.
3.5 Power of D-W test with errors following various PAR models

In the previous chapter we have investigated the power of D-W test for the
generalized regression model when errors follow the WN and AR(1) models. Here, we
will use Monte-Carlo simulation to examine the power of D-W test for errors following

various PAR models. We will carry out simulation based on the following models:

:0.1,0.5,09and o2(v): 1, 10, 50, 40.

[ 4
IBEAG)

v=]

(1) PAR4(1) with

(2) PAR4(2) with #,(v): -0.1,0.8,0.95, 1.1 and ¢,(v): 0.8, 0.4, -0.7, 0.3 and
cl(v):1,64,4,9,

(3) The varying orders PAR4(2,1,0,2) with ¢y (v):-0.1,0.8,0, 1.1, ¢,(+): 0.8, 0,0, 0.3
and ¢?(v): 1, 64,4,09.
All of the PAR models above are chosen to be periodic stationary. Model (1) is

H;t, (v) <1. For the periodic stationarity of Models (2) and (3)

v=l

periodic stationary if

see (Al-Quraan, 2010, p. 54-62).

It is worth mentioning that Albertson et al. (2002) have investigated the power of
the D-W test when errors in regression models follow the PAR(1) model. Although we
believe that there is some overlapping between their work and this research, we

emphasize that they have considered only PAR(1) model of errors with constant
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Yarianee of erors, In this study, we let those variances, o (v), vary. Moreover, we

have studied the power of D-W test for other PAR models as the PAR(2) and varying

PAR models. In addition, the model PAR(1) is also investigated.

As far as the simulation-work is concerned; 2000 repetitions each of realization
length n (100) pairs of data (X,Y) are simulated as the same steps in chapter two but the
different in step (2) generate a realization of length n { gy, £, ...,&; } from one of the
models above.

The simulation results for Model (1) are presented in Table (3.4), while the results

for Models (2) and (3) are presented in Table (3.5).
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19, (v) 8,1 $,(2) ¢,(3 $4 Two-sided Positive auto-
‘ 1) (0,(2)) BB). | (o@) correlated
-0.68 -0.60 0.50 2049
(-0.980) (-0.692) (-0.296) (-0.498) 0.0000 1.0000
0.68 20.60 0.50 049
(0.980) (-0.692) (-0.296) (-0.498) 0.0000 0.5535
0.68 0.60 -0.50 049
0.1 (0.980) (0.692) (-0.296) (-0498) |  0.6020 0.4685
0.68 0.60 0.50 0.49
(0.980) (0.692) (0.296) (-0.498) 0.9995 0.9985
0.68 0.60 0.50 0.49
(0.980) (0.692) (0.296) (0.498) 1.0000 1.0000
-1.60 060 -0.30 0.65
(-0.998) (-0.942) (-0.729) (-0.728) 1.0000 0.0000
1.60 20.60 -0.80 20,65
(0998) |  (-0.942) (-0.729) (-0.728) 1.0000 0.0000
1.60 0.60 -0.80 -0.65
0.5 (0.998) (0.942) (-0.729) (-0.728) + 1.0000 1.0000
1.60 T 0.60 0.80 0,65
(0.998) (0.942) (0.729) (-0.728) 1.0000 1.0000
1.60 0.60 0.80 0.65
(0.998) (0.942) (0.729) (0.728) 1.0000 1.0000
-1.30 .10 -0.90 0.70
(-0.999) (-0.993) (-0.962) (-0.944) 1.0000 0.0000
130 1,10 0.90 20.70 1.0000
(0.999) (-0.993) (-0.962) (-0.944) 0.0000
1.30 1.10 20.90 0.70 _
0.9 {0.999) 0.993) (-0.962) (-0.944) 0.2015 0.0000
1.30 1.10 0.90 0.70
(0.999) (0.993) (0.962) (-0.944) 1.0000 1.0000
130 1.10 0.90 0.70
(0.999) (0.993) (0.962) (6.944) 1.0000 1.0600

Table (3.5): The power of D-W test, errors following PAR4(2) (Model(2))
and PAR4(2,1,0,2) (Model(3))

Two- | Positive auto-
Model D} Sided | comelated
30 0.9995 1.0000
PAR4(2)

50 | 1.0000 1.0000
100 | 1.0000 1.0000
30 | 0.0595 0.1315
50 | 0.1390 0.2375
160 | 0.3595 0.5595

(2,(v)): 0.953, 0.803, 0.940, 0.976)

PAR4(2,1,0,2)
(2,{v)): 0.198, 0.172, 0.000, 0.495)
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3.6 Discussion

It can be secn from Table (3.4) that the significancy of D-W test when errors
follow PAR(1) is mainly affected by the magnitudes of seasonal autocorrelations
£,(v). When all of these autocorrelations are positive and relatively close to 1 then
both of the two-sided and positive autocorrelated test were highly significant. Else, if
some or all of the aﬁtocorrélations are negative then the power of the two-sided test is
larger than the power of .the positive autocorrelated test. Nearly similar comments
apply for the PAR4(2) and varying order PAR; models in Table (3.5). The p-values of
D-W test for the PAR4(2) model were very close or equal to one for both two-sided and
right~tail tests. This is attributed to the large positive first lag seasonal correlations for
this model. For the varying orders PAR, model, the p-value of the right-tail test was
larger than those of the two-sided test whereas all p-value are relatively small. This is
due to the relatively small (but non-negative) first lag antocorrelations. For this model
the power increases as n increases. In general, it seems that the type and orders of the
model have less effect on significany of D-W test. The main factor here is rather the

signs and magnitudes of o,(V); v=1, ..., 4.
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CHAPTER 4

Generalization of Cochrane-Orcutt Procedure

4.1 Introduction

In this chapter, we will explain the Cochran-Orcutt Procedure when errors terms
are autocorrelated. We will generalize the Cochrane-Orcutt procedure if the errors of
the regression model follow the PAR(1) model and we will give an application of the
proposed method using Monte-Carlo simulation.  Furthermore, we will compare

between LS method and Cochrane-Orcutt method via Bias and MSE.

4.2 Cochrane-Orcutt procedure

When the error terms are autocorrelated, then the parameters estimation of the
regression model is not straightforward. Under the assumption that the errors follow the
AR(1) model given by (2.1), the simple regression model in (1.1) is renamed as the
generalized simple linear regression mode] (Kutner et al., 2005, p. 484). In this case, -

the model (1.1) can be rewritten as (Kutner et al., 2005, p. 491):

Y;:B'o +B;X: +d“ t.—..'.l,z’_",n (4-1)
where
Y=Y -pYa, X/=X,-pX._, (4.2)
Bo = B(1 —p),} : (4.3)
B =5
and
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4.4)
a, =8 -pE, y, t=12,.,n

with {4, } being uncorrelated. Thus, (4.1) is a standard simple linear regression model.

Therefore, the estimation of Py and B starts by estimating p, then estimating By and
B'1 in (4.1) and finally obtaining estimates of f, and B, using (4.3). In fact, there are
several methods for estimating p in this situation including Cochrane-Orcutt procedure
and Hildreth-Lu procedure. In this chapter we will only consider the Cochrane-Orcutt

procedure. For more details on this issue see Kutner et al. (2005).

The Cochrane-Orcutt procedure involves an iteration of three steps (Kutner et al.,

2005, p. 492):

I.  Estimation of p. This is accomplished by noting that the autoregressive error
process assumed in model (1.1) can be viewed as a regression through the

origin:

E,=pE,_+a, t=12,..,n

Since & and €. are unknown, we use the residuals e, and e.; obtained by
ordinary least square as the response and predictor variables and estimate p by
fitting a straight line through the origin. We know that the moment estimator of
the slope p is:

;]
Z €16,

A =
p_-_...—_.—

n ' (4.5)

2
Z €1

t=2
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2. Fitting of transformed model (4.1), Using the estimate j in (4.5), we next obtain
the transformed variables ¥ and X! in (4.2) and use ordinary least squares with

these transformed variables to yield the fitted repression function as follow:

Y= fy + B X,
3. Test for need to iterate. The D-W test is then employed to test whether the error
terms for the transformed model are uncorrelated. If the test indicates that they
are uncorrelated, the procedure terminates. Then 3, and ﬁl are obtained based
on f; and f, in the previous step and using (4.3). Besides, an estimate of o}

is given by (Kutner et al., 2005, p. 487):

where &7 is the sample variance of residuals obtained from the fitted regression

model in the previous step.

4. If the D-W test in step (3} above is significant then steps (1)-(3) are repeated

for Y’ and X' inplace of Y and X. Continue until D-W test indicates that error

terms are uncorrelated.

4.3 Generalization of Cochran-Orcutt procedure for errors following PAR(1)

Consider the generalized simple linear regression model with error terms following

the zero-mean PAR (1) model, that is:

Y‘=‘30+let+5‘, t=1,23---’n} (4.6)

£ = ¢1 (V)£:-1 +a,
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where v=1, 2, ..., © denotes the season, #,(v) is the AR parameter of season v with

ﬁ¢1 (v) <1 and { & } is a zero-mean white noise process with periodic variances

vxl

o (v) and independent of &;.

In section {4.2) we have reviewed the Cochrane—Orcutt procedure for the estimation
of the parameters of the generalized regression model with errors following AR(1). Now
we will generalize this procedure for the model (4.6) above with errors following the
PAR(1) model. Since Y, and X, are seasonal time series with period @, we can rewrite

(4.6} as:

Yy, =By +BiXy, +¢y,, } “.7

v = & (V)gk,v—l +a,,

where the time k denotes the year and v=1, 2, ..., @ denotes the season.

Proposition (4.1): The generalized regression model (4.7) is equivalent to:

Y., =B (") +B,(VX,, +a,,, (4.8)
with

Y, i:',v = Yk,v —~ & ()
Xiw =Xy (X,
Bo(v) = po(1-¢,(v))
Bw)=5

(4.9)

Proof. The result is straightforward by substituting for Yiy and Yi,.; form (4.7) in

Y. = Xk.v -¢] (V)Yk,v-—l

kv

which gives
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Y;,.. =0t Ay T y) VKB + B+ Ey)

=4,0-4 )+ /(X P ¢, ()X k,v—l) + (gk,v - ¢1 V)e ki ) #

The transformed model in (4.8) is a generalized regression mode! with errors
following a seasonal white noise process with periodic coefficients. To estimate the
parameters of this model we note that (4.8) defines a standard regression model for
each season separately. That is, for instance to estimate B'o(1), (1) and & Z(1) we will

use the data for ¥/, and X, only.

Thus, we summarize the extended Cochrane-Orcutt procedure for errors following
PAR (1) model in the following steps:
(1) Regress Y; on X; using ordinary LS method and obtain the residuals {e,}.
(2) Test by using D-W test for autocorrelation among residuals. If residuals are not

autocorrelated then the procedure terminates.

(3) Estimate ¢,(v) by regressing Yy, on Xy, for each season v= 1, 2, ..., @

separately, Then obtain the residual for each model e, » then obtain @, (v) using:

. Z e;,v-l e;,v
¢l (V) = _'(T:l_—_— ’
(e’ (4.10)

k=1

(4) Compute ¥;, and X, using (4.9) and the estimates in (4.10). Then regress Y,

on X, , for data in each season v, separately. This gives 3, (v), B/(v) and

m

>ler )
Gly=t2 —.
m-2
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(5) Apply D-W test on {¢,,} for each season v=1, 2, ..., o. If none of cases is

significant then the procedure terminates. Else, if in some seasons the D-W

test was significant then we apply the ordinary Cochrane-Orcutt procedure on

those seasons until the D-W test is found insignificant for all seasons.

(6) Using £;(v), f{(v) and (4.9) find 3, and #, which are unbiased estimator of Py -
and ;. Denote them by f,, ard £,; v=1,2, ..., 0.

(7) In (6) we will get o estimates of By and B, thus we propose to estimate By and B,

by the average of these estimates, i.e.

ﬁo =—1‘ZBW and El =£)‘iﬁw (4.11)

(8) For the estimation of the variances of {g}, (4.7) gives

a'.: (V)= '?512(")0';2 ("'_"1) +0—3 (vv=1,2,.,@ (4.12)

Thus, replacing ¢,(v) and ¢’ (v) with their estimates obtained above we have

a system of o equations which can be solved for &2 (1) as (3.6) and (3.7).

Finally, we can use a test of periodically autocorrelated errors in step (2) above
proposed by McLeod (1995). This test is helpful in distinguishing the naturel of
autocorrelation in errors whether is it ordinary autocorrelation or periodic
autocorrelation, This test is defined as follows; let the first lag sample autocorrelation

for season v for errors {e;} be:

C(v)
'\/Co WC, (v -1 ’

nv)=
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Where Cj(v) is the sample seasonal autocovariance of season v and lag 1 defined as:

m-1
Z (e Jotv e, G joa-1 €, )
@=L
_ m-1
and
m-1
Z(ejw+v - _év )2
C,(v)=2 ,
m-—1

where ¢, is the sample mean of data in season v and m is the number of years of data.

Then
L=NY (i),
v=l

is asymptotically distributed as Chi-square of o degrees of freedom under the

assumption that there is no autocorrelation of first lag for all seasons. Thus, if L > ou

then we conclude that the errors are periodically autocorrelated.

4.4 An illustration of the proposed method

In this section we will give an application of the proposed method above using

Monte-Carlo simulation. We consider the model:
Y, =2+5X, +e, (4.13)

where, X= v, + (Cos(2nt/4)+50) with u is uniform (0, 1) and { & } follows the zero-
mean PAR(1) model:
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Ery =OWV)ELy T,

with ¢,(1)=-09,4,(2)=06,4,(3)=03,4,(4)=-08 and {a,} is a seasonal WN
process normally distribution with mean zero and variances & (1) =100,02(2) = |,
ol2(3)=1and o2 (4) = 10.

Therefore, the model in (4.13) is a generalized regression model with {g,} following
PAR,(1) model. Besides, X; is considered as a non-random seasonal time series with
period 4. This model is simulated using an R-code written by the author with a

realization of length n=15 years. The time series plot of Y, is sketched in Figure (4.1).

This figure shows an apparent seasonality with increasing linear trend.

Figure (4.1): The time series plot of Y(t)
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Now, following the steps of the proposed modified Cochrane-Orcutt in the previous

section:

{1) A simple LR model is fitted of Y on X which gave ¥ =1.183 + 50.035.X.

(2) The residuals {e,} in step (1) are computed and the D-W test (two-sided) is

applied. It is found that p-value of the test is 0.004 which is significant at « =
0.05.

(3) Yrand X, are subdivided as {Yi1, Xu1 ), § Y2, Xi2 ), { Y, Xxa ) and { Yy,
Xyxa} withk=1, ..., 30. Then, Yy, is regressed on Xy v (no-intercept) and gave:

4, (1) =-1.812, 4(2)=0590, ¢ (3)=0.298 and §,(4) =-0.727.

(4) Y, and X;, are obtained using (4.9). Regressing ¥/, on X x, for each season
v separately gave:
Fi(B=7593 , Bi(D=49990 , &2(1)=99.173
AH@=1175 , B(@)=49977 , &2(2)=0817
Bi®)=2.157T , fi(3)=49962 , &3(3)=0906
B(4=4961 , B(4=49977 , &2(4)=8.555
(5) The residuals {e; } for each season v= 1, 2, ..., ® are computed and the D-W

test ( two-sided ) is applied for each season. It is found that p-values of all tests
are: 0.945, 0.817, 0.295 and 0.408. Thus, all are non-significant so that the

iterations terminate.

(6) A, and 3, are obtained using (4.9) for each Season v separately and gave:
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B =2700 , B, =49.990

an =1.86) ' ﬁu =49977

-~

By =3.07L , B,=49962
B.=2873 , B,=49977
(7) In (6) we have = 4 estimates of By and By thus the estimates of By and P, are

obtained by the average of these estimates (4.11) which gave F, =2.877 and

~—

B, =49.977

(8) The estimates of the variances of {&} are obtained using (3.7) for various seasons

as follows: 87(1)=136.226 ,67(2) =48.191,62(3) =5.173and 62 (4) =11.288.

4.5 Bias and MSE of the proposed estimator using Monte-Carlo simulation

In this section we will study the estimates of By and f; for the LS method and the
generalized Cochrane-Orcutt method and compare between them via Bias and MSE

using Monte-Carlo simulation. We will focus on the estimates of By and B; only.

As far as the simulation-work is concerned; 2000 repetitions each of realization

length n (30, 50,100) pairs of data (X,Y) are simulated as follows:

(1) Generate the predictof values X; =t + 2Cos(2nt/4) ,t=1, 2, ..., no.
(2) Generate a realization of length nw { €1, €, ....& } from the zero mean PAR,(1)

model:

gk,v = ¢l (V)sk,v;-l + al:,v ’

with ¢, (1) =—0.9,4,(2) = 0.6,4,(3) = 0.3,¢,(4) = —0.8 and {a,} is a seasonal
WN process nonmally distribution with mean zero and variances o (1) =100,

cl(2)=1, o}(3)=1land (4} =10.
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(3) Compute Ytz 2 + 50X1+ Et t=l, 29 3! N (/i B
(4) Apply the steps from (1-7) of the generalized Cochrane-Orcutt procedure.

(5) Compute the Bias and MSE of estimates 8 and 3, for LS method and Cochrane-

Orcutt method as follows:
1
Bigs = —— -
as 2000 j=l((ﬂ0)j ﬂo)
and
1 2000. —
MSE = —— - .
00 2P, B}

Table 4.1: The Bias and MSE (in brackets) of estimates of By and §1

LS method Cochrane-Orcutt method

n ﬂn ﬁl ﬂo ﬂi

30 0.0206 0.0003 -0.0055 -0.000005
(3.0510) (0.0006) (0.6821) {0.0001)

50 0.0360 -(.0003 . -0.0163 0.00008
(1.8351) (0.0360) (0.3137) (0.00002)

100 0.0076 -0.0001 -0.0049 0.000003
(0.9399) (0.00001) (0.1389) (6.000002}

Table (4.1) presents the Bias and MSE (in brackets) of estimates for By and f; for
both the LS method and the generalized Cochrane-Orcutt procedure. Firstly, we
emphasize that the least squares estimates are not valid regardléss of bias and MSE
because the assumption of simple regression model are not satisfied. From Table (4.1)
we notice that the bias and MSE of estimates of By and By for both methods decrease as
n increases. Besides, the proposed method estimates dominate the LS estimates both in
view of bias and MSE. Finally, the bias and MSE for both methods were much smaller

for the estimates of B, than estimating By.
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CHAPTER 5

Application to Real Data

5.1 Introduction

In this chapter, a real data set was analyzed as an application of the generalized
Cochrane-Orcutt procedure for estimation of the parameters of the simple linear

regression model.

5.2 The data

For applying our generalized Cochrane-Orcutt procedure we used a quarterly time
series about the U.S, airline passenger-miles (in millions). The data expand 9 years

from 1996 to 2004 (Cryer and Chan, 2008). We denote the data by Y;; t=1, ..., 36.

The time series plot of our quarterly time series Y, is given in Figure (5.1}, We can

see that the time series shows an increasing trend and seasonality,
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Figure (5.1): The time series plot of quarterly U.S. airline passenger miles

(in millions)

5.3 Methodolegy and analysis

We will apply the generalized Cochrane-Orcutt procedure on Y, as follows:

(1) A simple LR model is fitted of Y on X; which gave ¥, =104.608 +0.866 X,

where Xt=t;t=1,2, ..., 36.

(2) The residuals {e;} in step (I) are computed and the D-W test is applied. It is found
that p-value of the test is 0.003 which is significant. To make sure the errors are
periodically autocorrelated we will use the McLeod test explained in the previous
chapter. It is found that the p-value of this test is 0.00009 which is also highly
significant. This means that there is a sufficient evidence that the errors are

periodically autocorrelated.
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Besides, McLeod (1995) suggested simple graphical methods to investigate

periodic antocorrelations i time series. Figure (52) shows the parallel hOX-plOtS of the
residuals {e,} by quarter resulted from the fitted regression model of Y, vs X, above. No
outliers are detected in this graph. Also the graph shows some differences between the
medians and variability of residuals by quarters. This may indicate the presence of
seasonality among fesiduals. The other graphical method is the scatter plots of residuals
belonging to successive quarters. This is shown in Figure (5.3). Different nature in the

various bivariate relationships in these plots is an indication of periodic autocorrelation

in errors.

10

Figure (5.2): Parallel box plot of residuals by quarter
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Figure (5.3): Scatter-plots of residuals of consecutive quarters

~ (3) Yeand X, are subdivided by quarter. Then ¥, , is regressed on X,,, ¥,, on X,,
» Yy, on X, and ¥, on X, s k=1, ...,9. The fitted regression models were:
Y., =99.544+0.733X,,

Y., =108.495+0.925X,,
Y,, =110877+0.914X, ,

~

¥4 =100211+0.847X, ,
Thus 4,(1)=0.733, 4,(2)=0.925, 4,(3) =0.914 and 4, (4)=0.847.

(4) Y, and X are obtained using (4.9). Regressing ¥, on X! for each quarter

v separately gave:
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p(h=23081 , Fi)=1081 , &X(1)=18045

Ay(=14330 , F(2)=3.190 , &2(2)=4.135
A®=10527 , B@®)=1210 , &3(3)=18.181
B @)=6095 , B(4)=0584 , G2(4)=22482

(5) The residuals {¢], } for each season v=1, ..., 4 are computed from the fitted

models in (4) and the D-W test is applied for each season. It is found that p-
values of all tests are: 0.481, 0.317, 0.273 and 0.419. Thus, all are not significant

so that the iterations terminate.

(6) B, and B, are obtained using (4.11) for each season v separately and gave:

B, =86468 , B, =1.081
B =190.195 , B, =3.190

P =122848 | B, =1210
B =39937 , B, =058

(7) Using above estimates and (4.11) we have f, =109.862 and f, =1.516.

(8) The estimates of the variances of {g,} are obtained using (4.12) and are as follows:
G2 (1)=53.128 ,62(2) =49.555,62(3) = 59.607 and 52 (4) = 65.284.
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CHAPTER 6

Conclusions and Future Work

6.1 Introduction

In this chapter, we summarize our results in this thesis. In addition, we give some

research ideas for further studies in the same field of periodically-correlated errors.

6.2 Conclusions

In this thesis we studied the simple linear regression with periodically-correlated

errors. Many useful results are found and different models are studied.

Firstly, we investigated if the power of the D-W test is affected by the model of the
autocorrelated errors. We have considered WN, AR(1), MA(1) and ARMA(1,1) models
with different values of parameters, realization length and the type of test (positive

autocorrelated and two-sided test).

For AR(1) model, the test of positive autocorrelated is significant with ¢ > 0 and
the power increases as ¢ is closer to 1 and in two-sided test, the power is symmetric in
view of ¢ and the power increases as [4] is closer to 1. For the MA(1) and ARMA(1,1)

models the power of D-W test was mainly affected by the value of first lag

autocorreiation pi.

When the errors follow the PAR4(1) model and all the first lag seasonal

autocorrelations p, (V) are positive and relatively close to 1 then both of two-sided and

positive autocorrelated test were highly significant. But, if some or all of the

autocorrelations are negative then the power of the two-sided test is larger than the
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power of the positive autocorrelated test. For the PAR(2) and varying orders PAR,

models the previous conclusion is also true.

Finally, we have generalized the Cochrane-Orcutt procedure of the errors term of
the regression model follow the PAR4(1) model. Then we used this procedure to
estimate the regression parameters Py and B;. Also, we apply our procedure on an
example and we found that the estimates values are very close the parameters values.
Using Monte-Carlo simulation we compare between least squares method and
Cochrane-Orcutt procedure for estimation B and f; via Bias and MSE, we noticed that
the Bias and MSE for both estimates decrease as n increases. Besides, the Bias and
MSE for the estimator of B; are less than those for Py in both methods. A real

application on the proposed procedure was also provided.

6.3 Future work
Simple linear regression model with errors following PAR4(1) model has been
investigated. However, we believe that there are several issues regarding regression
model with autocorrelated error need further research. For instance, the following two
statements are possible ideas for future work:
» Studying the multiple regression models as well as the multivariate regression
model with periodically autocorrealted errors.
* Using other procedures for estimation the parameters of regression models in
case of autocorrelated errors as the Hildreth-Lu and First Differences

procedures (Kutner et al., 2005, p. 495).
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